
PERL SCRIPTING
FOR

SQLITE

Slides by Laura Liparulo

Http://lauraliparulo.altervista.org

http://lauraliparulo.altervista.org/

Perl scripting for SQLite 2

●Introduction to SQLite

●Introduction to Perl scripting

●Comprehensive Perl Archive Network (CPAN)

●Perl Database Interface Module (DBI)

●Perl scripting for SQLite

Overview

Perl scripting for SQLite 3

INTRODUCTION TO SQLITE

Perl scripting for SQLite 4

What is SQLite? 1/2

● embedded SQL database engine;

● the most widely distributed database in history;

● used throughout the majority of mobile devices
including iPods, iPads etc.;

●If you use Firefox, Google Chrome, Skype you

are a consumer of SQLite!

Perl scripting for SQLite 5

What is SQLite? 2/2

●an ACID-compliant embedded relational
database management system contained in a

relatively small (~275 kB) C programming library;

● it stores the entire database as a single cross-
platform file on a host machine, which has

the file extension .db;

●SQLite implements SQL functions using
callbacks to C-language routines. Even the built-

in SQL functions are implemented this way.

Perl scripting for SQLite 6

History of SQLite

SQLite was designed by
Richard Hipp in the spring of
2000 while working as a
software engineer for General
Dynamics on contract with the
United States Navy.
Hipp was designing software
used on board guided missile
destroyer ships.
The design goals of SQLite
were to allow the program to
be operated without installing
a database management
system or administration.

Perl scripting for SQLite 7

Who uses SQLite?

SQLite is a popular choice for local/client SQL
storage within a web browser and within a rich

internet application framework.
Most notably the leaders in this area embed

SQLite.

Perl scripting for SQLite 8

Well-Known Users of SQLite

Perl scripting for SQLite 9

SQLite Smartphones adoption

● Google's Android
● Apple iOS

● RIM's BlackBerry
● Linux Foundation's MeeGo

● Palm's webOS
● Symbian OS

● Nokia's Maemo

Perl scripting for SQLite 10

SQLite Apple adoption

Apple adopted it as an option in Mac OS X's
Core Data API from the original implementation in
Mac OS X 10.4 onwards (Apple Mail, Safari, and
in Aperture), and also for administration of videos

and songs on the iPhone and iPod.
(where it is used for the SMS/MMS, Calendar,

Call history and Contacts storage).
Also in iTunes software.

Perl scripting for SQLite 11

SQLite Web browsers adoption

● Mozilla Firefox and Mozilla Thunderbird store a
variety of configuration data (bookmarks, cookies,

contacts etc.)

● Opera browser

● Google's Chrome browser

Perl scripting for SQLite 12

Adobe and Ruby on Rails adoption

● Adobe Systems uses SQLite as its file format in
Adobe Photoshop Lightroom, a standard

database in Adobe AIR, and internally within
Adobe Reader.

● Ruby on Rails' default database management

system is also SQLite.

Perl scripting for SQLite 13

SQLite features 1/3

• Small. (< 300 kB). No dependencies;

• Simple: single data file with a portable format;

• True relational database transactions.
Rich subset of SQL92;

●ACID;

● High performance;

• Safer than UNIX tools for related tables.

Perl scripting for SQLite 14

SQLite feature 2/3

• APIs in C, C++, Tcl, Python, ODBC, Java, PHP...

• Portable. Widely used, stable, solid;

• Large databases;

• Open source (public domain);

● significantly faster (as much as 10 or 20×) than
the default PostgreSQL, MySQL for most common

operations.

Perl scripting for SQLite 15

SQLite feature 3/3
● backup as simple as copying one file;

●dynamically typed: instead of assigning a type
to a column as in most SQL database systems,

types are assigned to individual values;

●Weakly typed: a string can be inserted into an
integer column. This adds flexibility to columns,
especially when bound to a dynamically typed

scripting language.

Perl scripting for SQLite 16

SQLite limitations
• No access control (i.e., embeddable);

• Foreign key constants must be implemented
with triggers;

• No type checking;

• No scaled integers. No date and time types;

• No nested transactions;

• Other minor SQL limitations.

Perl scripting for SQLite 17

Why a Relational Database?

• Normalized data structures are stable, minimize
redundancy and bugs;

• Simple data integrity protects from GUI bugs;

• Ad hoc queries are a powerful diagnostic tool.

Perl scripting for SQLite 18

Why embedding a Database?

• A simple back end for a web server;

• Improve performance for client-server
applications;

• Persistent data. No need to “save.”;

• Transactions protect data from corruption.

Perl scripting for SQLite 19

SQLite 3

A standalone program that can be used to:

● create a database;
●define tables;

●insert and change rows;
● run queries;

●manage a SQLite database file.

Perl scripting for SQLite 20

SQLite 3.0 library architecture 1/3

● Interface

implemented by functions found in the main.c,
legacy.c, and vdbeapi.c source files.

The sqlite3_get_table() routine is implemented in
table.c. sqlite3_mprintf() is found in printf.c.
sqlite3_complete() is in tokenize.c. The Tcl interface
is implemented by tclsqlite.c.

● Tokenizer

breaks the original string from the interface up into
tokens and pass those tokens one by one to the parser.
Source file: tokenize.c.

● Parser

using the Lemon LALR(1) parser generator, which is
concurrent and thread-safe.

● Code Generator

producing virtual machine code that will do the work
that the SQL statements request. Files in the code
generator: attach.c, auth.c, build.c, delete.c, expr.c,
insert.c, pragma.c, select.c, trigger.c, update.c,
vacuum.c and where.c.

http://www.sqlite.org/src/doc/trunk/doc/lemon.html

Perl scripting for SQLite 21

SQLite 3.0 library architecture 2/3

● Virtual machine

implements an abstract computing engine specifically designed to
manipulate database files. The machine has a stack which is used
for intermediate storage.

entirely contained in a single source file vdbe.ci with its own header
files: vdbe.h that defines an interface between the virtual machine
and the rest of the SQLite library and vdbeInt.h which defines
structure private the virtual machine

● B-tree

 found in the btree.c source file. A separate B-tree is used to
maintain each table and index of the database on disk. All B-trees
are stored in the same disk file.

The interface to the B-tree subsystem is defined by the header file
btree.h.

● Page cache

responsible for reading, writing, and caching fixed-size chunks, the
B-tree module requests information. The default chunk size is 1024
bytes but can vary between 512 and 65536 bytes.

The page cache also provides the rollback and atomic commit
abstraction and takes care of locking of the database file.

The code to implement the page cache is contained in the single C
source file pager.c. The interface to the page cache subsystem is
defined by the header file pager.h.

Perl scripting for SQLite 22

SQLite 3.0 library architecture 3/3

● Os interface

abstraction layer to interface with the operating system,
defined in os_unix.c for Unix, os_win.c for Windows, etc.
Each of these operating-specific implements typically has its
own header file: os_unix.h, os_win.h, etc.

● Utilities

Memory allocation and caseless string comparison routines
are located in util.c. Symbol tables used by the parser are
maintained by hash tables found in hash.c. The utf.c source
file contains Unicode conversion subroutines. SQLite has its
own private implementation of printf() (with some
extensions) in printf.c and its own random number
generator in random.c.

● Test code

more than half the total code base of SQLite is devoted to
testing. There are many assert() statements in the main
code files. In additional, the source files test1.c through
test5.c together with md5.c implement extensions used for
testing purposes only. The os_test.c backend interface is
used to simulate power failures to verify the crash-recovery
mechanism in the pager.

Perl scripting for SQLite 23

Installing SQLite on Linux

On UBUNTU, DEBIAN, etc:
:~$ sudo apt-get install sqlite3

On OPEN-SUSE:
:~$ sudo zypper install sqlite3

On REDHAT, CentOS, or FEDORA:
:~$ yum install SQLite3

Alternatively you can download it and install
manually at:

http://www.sqlite.org/download.html

Perl scripting for SQLite 24

SQLite: creating a new database

Let's create a new database by shell:

:~$ sqlite3 test.db create table user
(id integer primary key, name text, surname text);

Let’s fill it:
:~$ sqlite3 test.db “insert into user(name, surname)

values (‘linus’,'torvalds’);”
:~$ sqlite3 test.db “insert into user(name,surname)

 values(‘richard’, ‘stallman’)”;

Perl scripting for SQLite 25

SQLite query by bash

To check it out:
:~$sqlite3 test.db “select * from n”;

The result is:
1|linus|torvalds

2|richard|stallman

Perl scripting for SQLite 26

Sqlite3 enviroment

Alternatively you can create a database entering
the sqlite3 enviroment:

Anyway it’s better to work in the shell prompt
directly, that allows you to run scripts.

:~$ sqlite3 test.db
SQLite version 3.0.8
Enter “.help” for instructions
Enter SQL statements terminated
with a “;”
sqlite>

Perl scripting for SQLite 27

SQLite backup: „dump“ command

The .dump command shows information about all the changes performed onto the database.

$ sqlite3 test.db “.dump”

The result is:

PRAGMA foreign_keys=OFF;

BEGIN TRANSACTION;

CREATE TABLE n(id INTEGER PRIMARY KEY, f TEXT, l TEXT);

INSERT INTO “n” VALUES(1,’linus’,'torvalds’);

INSERT INTO “n” VALUES(2,’richard’,'stallman’);

COMMIT

If you want to backup the database in a new file, you can specify a name (ex. “dbbackup”):

$ $ sqlite3 test.db ‘.dump’ > dbbackup

Perl scripting for SQLite 28

SQLite backup: „sed“ command

The contents of the backup can be filtered and
piped to another database.

Below, table t1 is changed to t2 with the sed
command, and it is piped into the test2.db
database.

 $ sqlite3 test.db ".dump"|sed -e s/t1/t2/|sqlite3 test2.db

Perl scripting for SQLite 29

INTRODUCTION TO
 PERL SCRIPTING

Perl scripting for SQLite 30

What is Perl?

●"Practical Extraction and Report Language";

● interpreted programming language;

● used for a wide range of tasks: system
administration, web development, network

programming, GUI development, and more;

● language for open source code.

Perl scripting for SQLite 31

History of Perl

● Originally created in 1987 by Larry Wall,
while working at als Unisys.

● Wall was unhappy by the functionality that
sed, C, awk and the Bourne Shell offered
him. He looked for a language that will
combine all of their best features, while
having as few disadvantages of its own.

● Perl became especially popular as a
language for writing server-side scripts
for web-servers.

● commonly used for system administration
tasks, managing database data, as well as
writing GUI applications.

Perl scripting for SQLite 32

Perl features

● supports both procedural and object-oriented (OO) programming;

● a small amount of code goes a long way

● easy to use (plain text)

● runs much faster than bash scripting (file.sh)

● many built-in features (ex. text processing)

● Type friendly (no need for explicit casting)

● Basic syntax is C and PHP like

●very high portability across Web servers.

Perl scripting for SQLite 33

Perl versus C

● Perl program may be around 1/3 to three-quarters
as long as the corresponding program in C;

●Perl faster to write, faster to read, faster to
maintain...

●number of bugs in a program proportional to the
length of the source code: fewer bugs on average

●optimized for problems which are about 90%
working with text(regular expressions)

Perl scripting for SQLite 34

Creating a simple Perl script

Make a file called „helloWorld.pl“ :

:~$ touch web_code.pl

Then make it executable:

:~$ sudo chmod +x web_code.pl

Perl scripting for SQLite 35

„Web code“ Perl script
#!/usr/bin/perl -w
script to download the .html page of the website passed as argument by shell

use LWP::UserAgent;
use HTTP::Request;
use HTTP::Response;
use URI;

my $uris = shift || "http://www.google.com";
my $uri = URI->new($uris)->canonical;
$uris = $uri->as_string;
print "$uris -- HTTP RESPONSE\n";

#userAgent: to send and retrieve messages
my $ua = LWP::UserAgent->new;
my $request = HTTP::Request->new(GET => $uri);

my $scheme = $uri->scheme;

my $authority = $uri->authority;
my $path = $uri->path;
my $response = $ua->request($request);
print $response->content;
print "\n protocol: $scheme, path: $path, website: $authority \n";

Perl scripting for SQLite 36

Running „web_code.pl“

To run a Perl program from the Unix command line:

 $ perl web_code.pl http://ubuntu.com

Alternatively, put the path to your perl executable in the she-bang as the first
line of your script:

 #!/usr/bin/perl

Then run the perl script simply:
$./web_code.pl http://ubuntu.com

The result is the html code printed on the terminal.

http://ubuntu.com/

Perl scripting for SQLite 37

COMPREHENSIVE
PERL ARCHIVE

 NETWORK

Perl scripting for SQLite 38

Comprehensive Perl Archive Network 1/2

● CPAN, archive of nearly 100,000 modules of
software written in Perl, as well as documentation
for it;

● Online-Repository for Perl-Module;
● About 300 sites that all replicate the same

contents around the globe;
● Module: one file (which extension is *.pm) contain

common routines used by several programs (class
library)

Perl scripting for SQLite 39

Comprehensive Perl Archive Network 2/2

● resources easily accessible with the CPAN.pm
module;

● to help programmers locate modules and
programs not included in the Perl standard
distribution.

● Modules Network: Perl programming Authors
Upload Server (PAUSE)

● a Perl core module which is used to download
and install Perl software from the CPAN archive.

Perl scripting for SQLite 40

PERL
DATABASE INTERFACE

MODULE
(DBI)

Perl scripting for SQLite 41

PERL DBI
● Database Interface Module in Perl;

●included as core module;

●DBI knows how to locate and load in DBD
(`Database Driver') modules.

● DBD modules have the vendor libraries (es.
dbi:SQLite) in them and know how to talk to the

real databases;

● one DBD module for every different database.

Perl scripting for SQLite 42

Perl DBI architecture I

● Database Interface Module in Perl

●DBI knows how to locate and load in DBD
(`Database Driver') modules.

● DBD modules have the vendor libraries (es.
dbi:SQLite) in them and know how to talk to the

real databases;

● one DBD module for every different database.

Perl scripting for SQLite 43

Perl DBI architecture II

Perl scripting for SQLite 44

DBI proxying
Perl DBI supports database proxying through two modules:

● DBD::Proxy, used by client programs to talk to a proxy server;

● DBI::ProxyServer, implementing the server.

Perl scripting for SQLite 45

#!/usr/bin/perl

use strict;
use DBI; # dbi module

my $database = "test";
my $hostname = "localhost";
my $dsn = "DBI:mysql:database=$database;host=$hostname";
my $user = "testuser"; my $pass = "userpass";

dbh = database handler
connecting to the database by DBI
my $dbh = DBI::->connect($dsn, $user, $pass,
 { 'RaiseError' => 1, 'AutoCommit' => 1 })
 or die DBI::errstr;

 # handling the database.

to disconnect fromthe database
$dbh->disconnect; .

Perl DBI script overview

Perl scripting for SQLite 46

Driver handles

● $drh : driver handle
● @drh = DBI->available_drivers();

list of the available DB-drivers (ex. copy of a
Microsoft Access database(DBD::ODBC) to a
Oracle database (DBD::Oracle).

● @drh = DBI->datasource();

Perl scripting for SQLite 47

DBI Driver handles script

#!/usr/bin/perl -w

use DBI;

Probe DBI for the installed drivers

my @drh = DBI->available_drivers();

die "No drivers found!\n" unless @drivers; # should never happen

Iterate through the drivers and list the data sources for each one

foreach my $driver (@drh) {

print "Driver: $driver\n";

my @dataSources = DBI->data_sources($driver);

foreach my $dataSource (@dataSources) {

print "\tData Source is $dataSource\n"; }

print "\n";

}

exit;

Perl scripting for SQLite 48

DBI Database handles

● $dbh : database handle
● $dbh = DBI->connect($data_source,

$username, $auth,

\%attr);
● dbh->disconnect();

Perl scripting for SQLite 49

DBI Statement handle

● $sth = $dbh->prepare($query)
● $sth->execute($query)
● $sth->fetchrow_array()
● $sth->finish();
● Unlimited amount of statements pro database.

Perl scripting for SQLite 50

Statement handles DBI data flow

Perl scripting for SQLite 51

Statements handling 1/2

PREPARE THE CREATE STATEMENT

my $query = "CREATE TABLE if not exists student (

 id INTEGER PRIMARY KEY,

 first_name TEXT,

 last_name TEXT,

 email TEXT) ";

my $sth = $dbh->prepare($query) or die("Cannot prepare: " .
DBI::errstr());

EXECUTE THE CREATE STATEMENT

my $ret = $sth->execute() or die("Cannot execute: " . DBI::errstr());

Perl scripting for SQLite 52

Statements handling 2/2

Perl DBI allows to perform statements directly with the do() function,
simply wrapping the prepare and execute stages in one.

$dbh->do("CREATE TABLE if not exists student (

 id INTEGER PRIMARY KEY, first_name TEXT,

 last_name TEXT, email TEXT) ");

Invoking do() repeatedly to insert a uge number of rows into a table,
you could be preparing a statement handle many times more than is
required, especially if the statement contained placeholder variables.

Perl scripting for SQLite 53

PERL SCRIPTING FOR SQLITE

Perl scripting for SQLite 54

DBI: Creating/accessing a Sqlite .db
#!/usr/bin/perl -w

use DBI;
use strict;

CONFIG VARIABLES
my $platform = "SQLite";
my $database = "hollywood.db";
my $host = "localhost";
my $port = "3306";
my $user = "username";
my $pw = "password";

DATA SOURCE NAME
my $dsn = "dbi:$platform:$database:$host:$port";

PERL DBI CONNECT
my $dbh = DBI->connect($dsn, $user, $pw) or die "Cannot connect:
$DBI::errstr";

Perl scripting for SQLite 55

DBI: Creating and populating tables
creating the "hollywood" database
$dbh->do("CREATE TABLE actors(aid integer primary key, name text)");

$dbh->do("CREATE TABLE movies(mid integer primary key, title text)");

$dbh->do("CREATE TABLE actors_movies(id integer primary key, mid integer,
aid integer)");

#populating "actors" table
$dbh->do("INSERT INTO actors(name) VALUES('Philip Seymour Hofman')");
$dbh->do("INSERT INTO actors(name) VALUES('Kate Shindle')");
$dbh->do("INSERT INTO actors(name) VALUES ('Kelci Stephenson')");
$dbh->do("INSERT INTO actors(name) VALUES('Al Pacino')");
$dbh->do("INSERT INTO actors(name) VALUES('Gabrielle Anwar')");
$dbh->do("INSERT INTO actors(name) VALUES('Patricia Arquette')");
$dbh->do("INSERT INTO actors(name) VALUES('Gabriel Byrne')");
$dbh->do("INSERT INTO actors(name) VALUES('Max von Sydow')");
$dbh->do("INSERT INTO actors(name) VALUES('Ellen Burstyn')");

Perl scripting for SQLite 56

DBI: Querying a Sqlite .db Ex.1

my $sql = „SELECT id, name, title, phone FROM employees „

my $sth = $dbh->prepare($sql);

$sth->execute();

#bind colums to scalar references
my($id, $name, $title, $phone);

$sth->bind_columns(\$id, \$name, \$title, \$phone);

while($sth->fetch()) {

 print "$name, $title, $phone\n";

}

Perl scripting for SQLite 57

DBI: Querying a Sqlite .db Ex.2

EXECUTE THE QUERY
my $query = "SELECT actors.name , movies.title FROM
actors,movies,actors_movies WHERE actors.aid=actors_movies.aid and
movies.mid=actors_movies.mid";

my $sth=$dbh->selectall_arrayref($query);

print "Actor Movie \n" ;
print "====================== ====================\n";

foreach my $row (@$sth) {
my ($name, $title) = @$row;

Print out the table metadata...
printf "%-23s %-23s \n", $name, $title;

}

Perl scripting for SQLite 58

DBI: Querying a Sqlite .db Ex.3
my @names = ("Larry%", "Tim%", "Randal%", "Doug%");

my $sql = „SELECT id, name, title, phone FROM employees
 WHERE name LIKE ?“;

my $sth = $dbh->prepare($sql);

for(@names) {
bind_param to prepare an SQL statement one time and execute it very quickly.
 $sth->bind_param(1, $_,);
 $sth->execute();
 my($id, $name, $title, $phone);
 $sth->bind_columns(undef, \$id, \$name, \$title, \$phone);

 while($sth->fetch()) {
 print "$name, $title, $phone\n";
 }
}
$sth->finish();

Perl scripting for SQLite 59

Perl DBI: Transactions

● Transactions: UPDATE, DELETE, etc.

● eval {…} blocks to trap errors

● $dbh->commit();

● $dbh->rollback();

Perl scripting for SQLite 60

Perl DBI: Commit

foreach my $country_code (qw(US CA GB IE FR)) {
print "Processing $country_code\n";
Do all the work for one country inside an eval
eval {
Read, parse and sanity check the data file (e.g., using DBD::CSV)
my $data = load_sales_data_file("$country_file.csv");
Add data from the Web (e.g., using the LWP modules)
add_exchange_rates($data, $country_code,"http://exchange-rate.com");
Perform database loading steps (e.g., using DBD::Oracle)
insert_sales_data($dbh, $data);
update_country_summary_data($dbh, $data);
insert_processed_files($dbh, $country_code);
Everything done okay for this file, so commit the database changes
$dbh->commit();
}; #end eval

Perl scripting for SQLite 61

Perl DBI: Rollback

If something went wrong...
if ($@) {
Tell the user that something went wrong, and what went wrong
warn "Unable to process $country_code: $@\n";
Undo any database changes made before the error occured
$dbh->rollback();
Keep track of failures
push @failed, $country_code;
}
} #end foreach

Perl scripting for SQLite 62

Http://perl.org

Http://sqlite.org

http://cpan.perl.org

http://dbi.perl.org/

http://perl.org/
http://sqlite.org/

Perl scripting for SQLite 63

Check my blog:

Http://lauraliparulo.altervista.org

Also available on:

as „Laura Liparulo“

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

